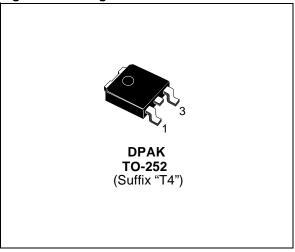


STD95NH02L N-CHANNEL 24V - 0.0039Ω - 80A DPAK ULTRA LOW GATE CHARGE STripFET™ MOSFET

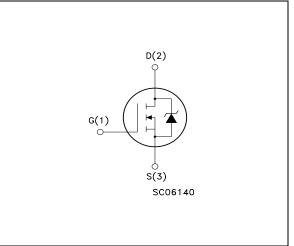
Table 1: General Features

ТҮРЕ	V _{DSS}	R _{DS(on)}	I _D
STD95NH02L	24 V	< 0.005Ω	80(*) A

- TYPICAL R_{DS}(on) = 0.0039Ω @ 10 V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED


DESCRIPTION

The **STD95NH02L** is based on the latest generation of ST's proprietary STripFET[™] technology. An innovative layout enables the device to also exhibit extremely low gate charge for the most demanding requirements in high-frequency DC-DC converters. It's therefore ideal for high-density converters in Telecom and Computer applications.


APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY DC/DC CONVERTERS

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

PART NUMBER	PART NUMBER MARKING		PACKAGING
STD95NH02LT4	STD95NH02LT4 D95NH02L		TAPE & REEL

Symbol	Parameter	Value	Unit	
V _{spike} (1)	Drain-source Voltage Rating	30	V	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	24	V	
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	24	V	
V _{GS}	Gate- source Voltage	± 20	V	
I _D (*)	Drain Current (continuous) at T _C = 25°C	80	A	
ID	Drain Current (continuous) at T _C = 100°C	68	A	
I _{DM} (2)	Drain Current (pulsed)	320	A	
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	100	W	
	Derating Factor	0.67	W/°C	
E _{AS} (3)	Single Pulse Avalanche Energy	600	mJ	
T _{stg}	Storage Temperature	-55 to 175	°C	
Тj	Max. Operating Junction Temperature	55 10 175		

Table 3: Absolute Maximum ratings

(1) Garanted when external $R_g = 4.7 \Omega$ and $t_f < t_f$ max. (2) Pulse width limited by safe operating area. (3) Starting $T_j = 25^{\circ}$ C, $I_D = 40$ A, $V_{DD} = 22$ V (*) Value limited by wires

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	1.5	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W
Τι	Maximum Lead Temperature For Soldering Purpose	275	°C

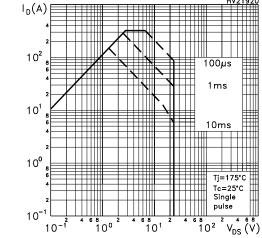
ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 5: On/Off

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	24			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1			V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$ $V_{GS} = 5 \text{ V}, I_D = 40 \text{ A}$		0.0039 0.0055	0.005 0.009	Ω Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

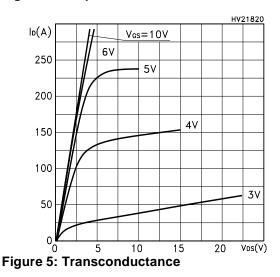
Table 6: Dynamic

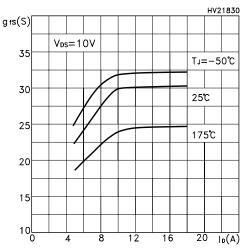
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (4)	Forward Transconductance	V _{DS} = 10 V _, I _D = 10 A		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 15V, f = 1 MHz, V _{GS} = 0		2070 990 90		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time			20 110 47 20		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 12 \text{ V}, I_D = 80 \text{ A}, V_{GS} = 5 \text{ V}$ (see Figure 19)		17 7.6 6.8		nC nC nC
Q _{oss} (5)	Output Charge	V _{DS} = 19 V, V _{GS} = 0 V		22.6		nC
Q _{gls} (6)	Third-Quadrant Gate Charge	$V_{DS} < 0 V, V_{GS} = 5 V$		15		nC
R _G	Gate Input Resistance	f = 1 MHz Gate DC Bias = 0 Test Signal Level = 20 mV Open Drain		1.8		Ω


Table 7: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				80	А
I _{SDM}	Source-drain Current (pulsed)				320	А
V _{SD} (4)	Forward On Voltage	$I_{SD} = 40A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 80A$, di/dt = 100 A/µs, V _{DD} =20 V, T _j = 150°C (see Figure 16)		42 50.4 2.4		ns nC A

(4). Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5 %.


(5). $Q_{oss} = C_{oss}^* \Delta V_{in}$, $C_{oss} = C_{gd} + C_{ds}$. See Appendix A. (6). Gate charge for Syncronous Operation.


57

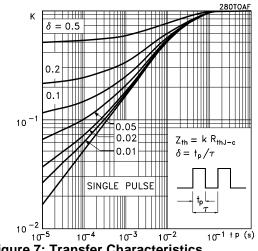

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

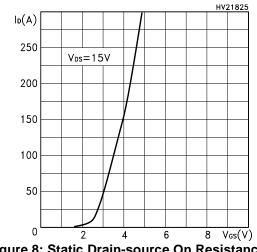
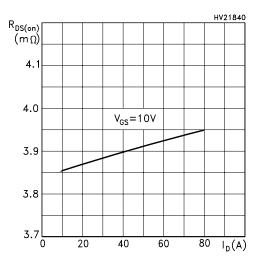



Figure 8: Static Drain-source On Resistance

Figure 9: Gate Charge vs Gate-source Voltage

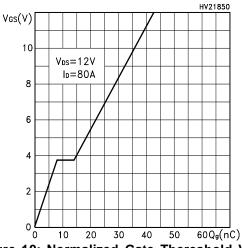


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

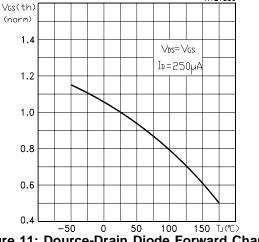
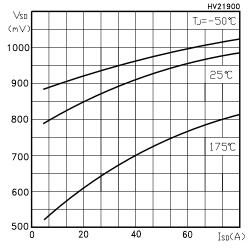



Figure 11: Dource-Drain Diode Forward Characteristics

<u>____</u>

Figure 12: Capacitance Variations

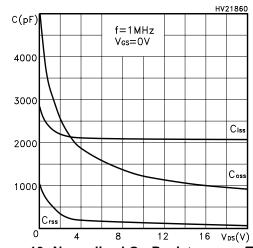



Figure 13: Normalized On Resistance vs Temperature

Temperature

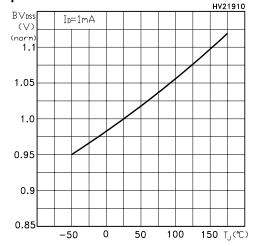


Figure 15: Unclamped Inductive Load Test Circuit

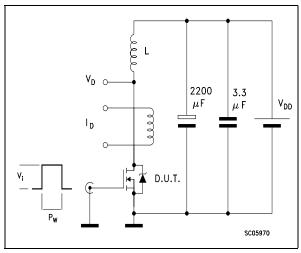


Figure 16: Switching Times Test Circuit For Resistive Load

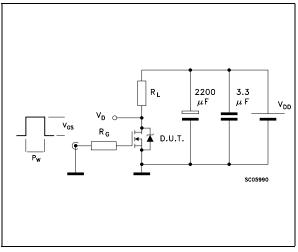
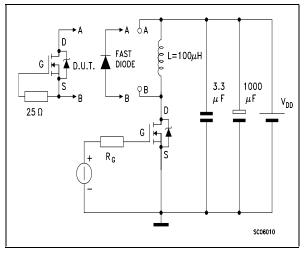
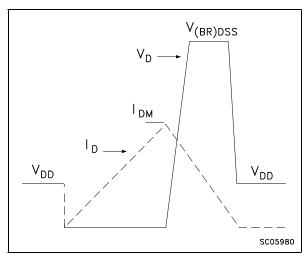
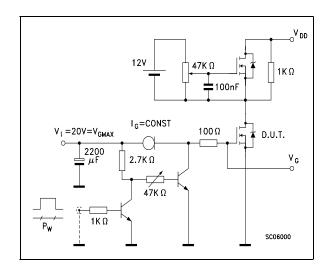
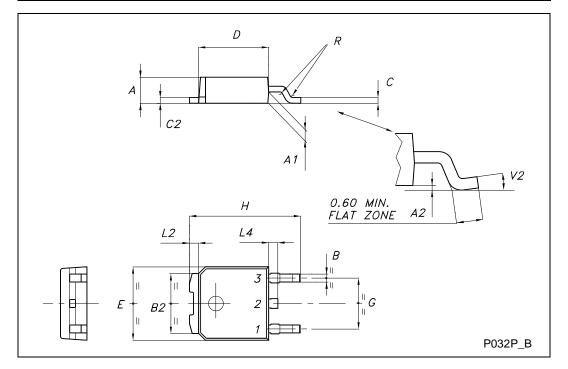
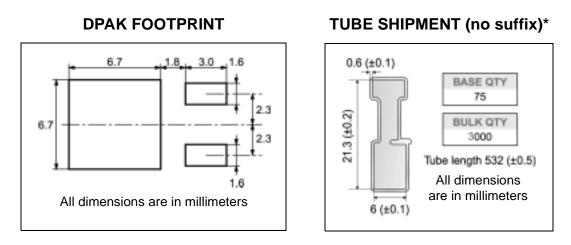



Figure 17: Test Circuit For Inductive Load Switching and Diode Recovery Times

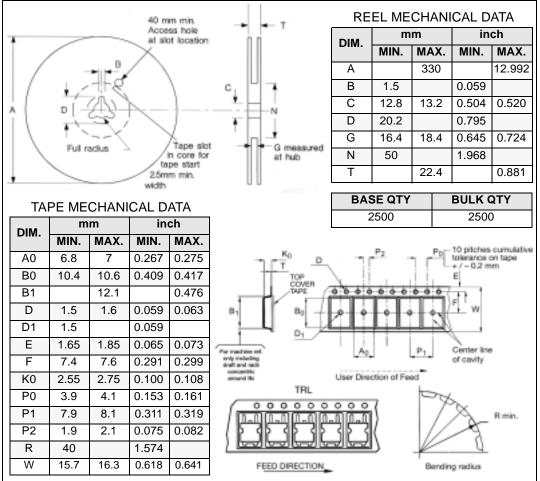
Figure 18: Unclamped Inductive Wafeform


Figure 19: Gate Charge Test Circuit



ĹŢ

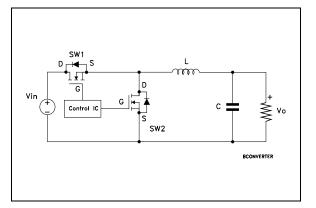

DIM.		mm		inch		
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

TAPE AND REEL SHIPMENT (suffix "T4")*

* on sales type

Appendix A: Buck Converter Power Losses Estimation

DESCRIPTION


The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

The low side (SW2) device requires:

- Very low RDS(on) to reduce conduction losses
- Small Q_{gls} to reduce the gate charge losses
- Small C_{oss} to reduce losses due to output capaci tance
- Small Q_{rr} to reduce losses on SW1 during its turn-on
- The C_{gd}/C_{gs} ratio lower than V_{th}/V_{GG} ratio especially with low drain to source voltage to avoid the cross conduction phenomenon

The high side (SW1) device requires:

- Small R_g and L_s to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Q_g to have a faster commutation and to reduce gate charge losses
- Low R_{DS(on)} to reduce the conduction losses

		High Side Switch (SW1)	Low Side Switch (SW2)
Pconduc	tion	$R_{DS(on)SW1}^* I_L^2 * \delta$	$R_{DS(on)SW2}^* I_L^2 * (1 - \delta)$
Pswitching		$V_{\text{in}} * (Q_{\text{gsth}(\text{SW1})} + Q_{\text{gd}(\text{SW1})}) * \text{f} * \frac{I_L}{I_g}$	Zero Voltage Switching
P _{diode}	Recovery	Not Applicable	${}^{1}V_{in} \ast Q_{rr(SW2)} \ast f$
	Conduction	Not Applicable	$V_{f(SW2)} * I_L * t_{deadtime} * f$
Pgate(Q)	$Q_{g(SW1)} \ast V_{gg} \ast f$	$Q_{gls(SW2)} * V_{gg} * f$
P _{Qoss}		$\frac{V_{in} * Q_{oss(SW1)} * f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$

Parameter	Meaning		
δ	Duty-Cycle		
Q _{gsth}	ost Threshold Gate Charge		
Q _{gls}	Third Quadrant Gate Charge		
Pconduction	On State Losses		
Pswitching	On-off Transition Losses		
Pdiode	Conduction and Reverse Recovery Diode Losses		
Pdiode	Gate Drive Losses		
P _{Qoss}	Output Capacitance Losses		

Table 8: Revision History

Date	Revision	Description of Changes
27-Aug-2004	1	First Release.
10-Sep-2004	2	Values changed in table 7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America